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ABSTRACT: A system subject to an accumulative deterioration and continuously monitored is considered.
The system fails when its degradation level exceeds a predetermined failure threshold. At system failure, a
signal is sent to the maintenance team, which arrives after afixed delay and performs an instantaneous replace-
ment. To prevent failures and shorten the down period, a condition-based maintenance strategy is applied and
the maintenance team is preventively called when the degradation of the system exceeds a predetermined pre-
ventive threshold lower than the failure threshold, with the same fixed delay for the team’s arrival otherwise. At
maintenance time, an instantaneous but imperfect repair isperformed. Two different imperfect repair models
are considered, in the spirit of virtual age models for recurrent events. The first model assumes that the repair
reduces the degradation of the system (Model I). The second model assumes that the repair reduces the age of
the system (Model II). For both models, Markov renewal equations are obtained for some reliability indicators.
Numerical examples are given to illustrate the analytical results and to compare both models of repair.

1 INTRODUCTION

Most of the systems suffer a physical degradation be-
fore the failure. Mathematical models that describe
the process of degradation of systems play a central
role to improve the reliability and the maintainabil-
ity of these systems. For certain types of degrada-
tion processes, a model involving independent non-
negative increments is appropriate. The gamma pro-
cess (Singpurwalla 1995) is a natural model for degra-
dation processes in which the deterioration is sup-
posed to take place gradually over time in a sequence
of tiny increments such as wear, fatigue, corrosion,
crack growth, etc. Mathematically, a gamma process
is a stochastic process with independent, non-negative
and gamma distributed increments with a common
scale parameter. Furthermore, the existence of an ex-
plicit probability distribution function of this stochas-
tic process permits feasible mathematical develop-
ments.

For deteriorating systems, when the degradation
level reaches a threshold, the system is no longer
able to function satisfactorily. Since it is generally
less costly to replace a system before it has failed,
maintenance policies based on the system condition

are usually proposed, aiming at preventing failures.
Such maintenance strategies minimize the mainte-
nance cost, improve operational safety and reduce the
quantity and severity of in-service system failures,
see (Bérenguer, Grall, Dieulle, & Roussignol 2003),
(Grall, Bérenguer, & Dieulle 2002), (Huynh, Bar-
ros, Bérenguer, & Castro 2011) e.g.. Condition-based
maintenance uses data collected through continuous
monitoring, and based on the information data, differ-
ent maintenance actions are programmed. The system
condition after a maintenance action depends on the
maintenance efficiency with two extreme cases: the
system condition is the same as just before the main-
tenance action (minimal maintenance) and the system
condition is the same as if the system were new (per-
fect maintenance). In practice, system condition af-
ter the maintenance actions lies between these two
extreme cases (Doyen & Gaudoin 2004). In the lit-
erature several models combining imperfect mainte-
nance and degradation processes have been proposed,
see (Castanier, Bérenguer, & Grall 2003), (Newby &
Barker 2006) and (Nicolai, Frenk, & Dekker 2009).

This paper shares the modelling assumptions of
(Mercier & Castro 2013). So, a system subject to a cu-
mulative deterioration modelled as a gamma process,



continuously monitored and under an imperfect and
deferred maintenance is analyzed. By deferred main-
tenance, we mean that the maintenance tasks are not
performed when they should be carried out, due to a
delay in the arrival of the maintenance team. The im-
perfect maintenance is developed under two models
of repair. In the first model (Model I), repair reduces
the degradation of the system accumulated from the
last maintenance action. In the second model (Model
II), repair reduces the system age accumulated from
the last maintenance action. Both models of repair
take into acount the overshoot of the gamma process
and are analyzed under the theory of Markov Renewal
processes. For both models of repair, different tran-
sient reliability measures are obtained in the frame-
work of semi-regenerative processes with continuous
space state. Numerical examples are given to compare
both types of repair.

The paper is structured as follows. In Section 2,
the formulation of the problem is showed. Section 3
develops the mathematical formulation that describes
the functioning of the system under the two repair
models. Section 4 is focused on the calculus of dif-
ferent transient reliability measures. Section 5 shows
some numerical examples of the measures calculated
previously and Section 6 concludes.

2 FORMULATION OF THE PROBLEM

We consider a system subject to a deterioration mod-
elled by a gamma process(Xt)t≥0, where Xt is
gamma distributedΓ(αt, β) with probability distribu-
tion function (p.d.f.)

ft (x) =
βαt

Γ(αt)
xαt−1e−βx1R+ (x) ,

where1{} stands for the indicator function andα,β >
0 and with Lévy measure given by

µ (ds) = α
e−βs

s
1R∗

+
(s)ds. (1)

The cumulative distribution function (c.d.f.) and
survival function (s.f.) ofXt are denoted byFt and
F̄t respectively.

The system fails when its degradation exceeds the
levelL with time to failure

σL = inf (t > 0 : Xt > L) .

At timeσL, a signal is sent to the maintenance team
which arrives at timeσL + τ whereτ is deterministic
and instantaneously replaces the out-of-order system
by an identical new one (at timeσL + τ ). Hence, the
system is unavailable fromσL up toσL + τ .

To reduce the system downtime, an alert signal is
preventively sent to the maintenance team as soon as

the system reaches a preventive maintenance levelM
(0 ≤ M ≤ L), namely at timeσM ,

σM = inf (t > 0 : Xt > M) .

At timeσM + τ , the maintenance team is ready to op-
erate and tries to adjust the system. At the time of the
maintenance,

• If the system is failed (that is,σL ≤ σM + τ ), a
corrective replacement is performed and the sys-
tem is replaced by a new one.

• If the system is working (that is,σL > σM + τ ),
an imperfect repair is performed with two mod-
els of repair:

– Model I. The repair tasks remove a part
(ρ%) of the degradation accumulated from
the last maintenance model (0 ≤ ρ ≤ 1).

– Model II. The repair tasks remove a part
(ρ%) of the age accumulated from the last
maintenance model (0 ≤ ρ ≤ 1).

• After the imperfect repair

– If the degradation of the system is greater
thanM , the system is considered to be too
degraded. A preventive replacement is per-
formed and the system is replaced by a new
one.

– If the degradation of the system is less than
M , the system goes on working.

In short, the maintenance actions for Model I and
II are the following

• A corrective replacement (CR) when the system
is broken at the arrival of the team maintenance.

• A preventive repair (PM) when the repair brings
the degradation of the system belowM .

• A preventive repair plus a preventive replace-
ment (PM+PR) when the repair does not bring
the degradation belowM .

To specifically describe the two models of repair
and the maintenance strategy, we shall make use of

independent copies of(Xt)t≥0 denoted by
(

X
(n)
t

)

t≥0

for n = 1,2, . . . . Corresponding reaching times of

thresholdL (M) are denoted byσ(n)
L

(

σ
(n)
M

)

respec-

tively and let(Yt)t≥0 be the process that describes the
evolution of the maintained system.



3 MATHEMATICAL FORMULATION

Let S1 = σ
(1)
M + τ be the first maintenance time. At

timeS1, the deterioration levelX(1)
S1

is observed. If the

system is not failed, namely ifX(1)
S1

≤ L, a preventive
repair is performed. For Model I , the repair reduces
ρ% of the degradation of the system. The degradation
level after repair hence is(1− ρ)X

(1)
S1

(deterministic

function ofX(1)
S1

). For Model II, the repair reducesρ%
of the system age. The degradation level after repair
hence is random, identically distributed asX

(1)
(1−ρ)S1

.
In the following, we set:

Z
(n)
Un

=

{

(1− ρ)X
(n)
Un

for Model I,
X

(n)
(1−ρ)Un

for Model II.

The general evolution of the maintained system for
both models of repair is the following, withS1, ...,Sn,
... the maintenance times andU1, ...,Un, ... the inter-
maintenance times (andU1 = S1).

At time S1 :

• If X
(1)
S1

> L a corrective replacement is per-
formed at timeS1, YS1 = 0.

• If X
(1)
S1

≤ L a preventive repair is performed at
timeS1 putting the system back to the deteriora-
tion levelZ(1)

S1
.

– If Z(1)
S1

≥ M , the system is unmaintainable
YS1 = 0.

– If Z(1)
S1

< M , YS1 = Z
(1)
S1

.

From YS1 , the second maintenance action is
planned at timeS2 = S1 + σ

(2)
M−YS1

+ τ = S1 +U2,

• If Y −
S2

> L a corrective replacement is performed
at timeS2, YS2 = 0.

• If X−
S2

≤ L a preventive maintenance is per-
formed at timeS2 putting the system back to the
deterioration levelYS1 + Z

(2)
U2

.

– If YS1 + Z
(2)
U2

≥ M , the system is unmain-
tainableYS2 = 0.

– If YS1 +Z
(2)
U2

< M , YS2 = YS1 +Z
(2)
U2

.

More generally, assumeS1, S2, . . . , Sn and
(Yt)t≤Sn−1 to be constructed withn ≥ 2. Let

Un = σ
(n)
M−YSn−1

+ τ andSn = Sn−1 +Un.

• If Y −
Sn

> L, the system failed inUn, henceYSn
=

0.

• If YS−

n
≤ L, a preventive maintenance action

puts the system back to the deterioration level
YSn−1 + Z

(n)
Un

.

– If YSn−1 +Z
(n)
Un

≥M , the system is unmain-
tainable and it is replaced by a new one at
Sn, henceYSn

= 0.

– If YSn−1 + Z
(n)
Un

< M , the system is not re-

placed atSn andYSn
= YSn−1 + Z

(n)
Un

.

For both models, after a maintenance action at time
Sn, the future evolution of the maintained system
(Yt)t≥Sn

depends on the past(Yt)t≤Sn
only through

YSn
and the process(Yt)t≥0 appears as a semi-

regenerative process with underlying Markov renewal
process(Sn, YSn

)n∈N and inter-arrival timesUn’s. The
kernel of(Sn, YSn

)n∈N is

qx(ds, dy) = P (S1 ∈ ds, YS1 ∈ dy|Y0 = x)

= Px (S1 ∈ ds, YS1 ∈ dy)

with support [τ,+∞[× [0,M ] becauseS1 ≥ τ and
YS1 ∈ [0,M ] almost surely. The main point of the
study is to compute this Markov renewal kernal for
the two models. As a first step for Model I, we have
to compute the distribution of(S1,ZS1,XS1), with
ZS1 = (1− ρ)XS1 for Model I andZS1 = X(1−ρ)S1

for Model II. We only provide elements of proofs for
Model I. Technical details may be found in (Mercier
& Castro 2013) for Model II, which are much more
technical than Model I. AsZS1 = (1− ρ)XS1 , the first
point for Model I simply is to provide the distribution
of (S1,XS1).

Proposition 1 The probability distribution function
(p.d.f.) of(S1,XS1) is:

hM (s, z) =

∫∫

Dz,M

fs−τ (z − y − u)fτ (y) µ (du) dy

(2)

for all s > τ and x ≥ M , whereµ(ds) denotes the
Lévy measure given by (1) and where

Dz,M =
{

(u, y) ∈ R
2
+ : M ≤ z − y < M + u

}

.

Proof 1 (sketch of) It is already known from
(Bertoin 1996) that the p.d.f. of(σM ,XσM

) is

gM (t, y) = 1{M≤y}

∫ +∞

0

1{y<M+u}ft (y− u) µ (du) .

Using the fact that(S1,XS1) = (σM + τ,XσM+τ ) is

identically distributed as

(

σ
(1)
M ,X

(1)

σ
(1)
M

)

+
(

τ,X
(2)
τ

)

,



the p.d.f. of(S1,XS1) is the convolution ofgM and

of the distribution of
(

τ,X
(1)
τ

)

, which provides the

result.

Separating according to the three possible cases
at time S1 (CR, PM+PR, PM), the kernel of
(Sn, YSn

)n∈N may be written as:

qx(ds, dy)

= Px (S1 ∈ ds,XS1 > L,0 ∈ dy)

+Px

(

S1 ∈ ds,XS1 ≤ L,XS1 ≥
M
1−ρ

,0 ∈ dy
)

+Px

(

S1 ∈ ds,XS1 ≤ L,XS1 <
M
1−ρ

,XS1 ∈
dy

1−ρ

)

.

Given that the system starts fromx, we next use the
p.d.f. of(S1,XS1) provided by(2) with M substituted
by M − x, and also replaceL by L− x in the previ-
ous formula. This provides the following result for the
Markov renewal kernel.

Proposition 2 For Model I, we have:

qx(ds, du) (3)

= δ0(du)

∫ ∞

L−x

hM−x(s, u)du

+δ0(du)1{M−x<(1−ρ)(L−x)}

∫ L−x

M−x
1−ρ

hM−x(s, u)du ds

+1{0≤u−x<Bx(M,L)}h
M−x

(

s,
u− x

1− ρ

)

du

1− ρ
ds,

for all s > τ andu <M , whereBx(M,L) is given by

Bx(M,L) = min((L− x)(1− ρ),M − x),

andhM (s, x) is provided by(2).

For Model II, the corresponding result from
(Mercier & Castro 2013) is:

qx(ds, dy) (4)

= 1{y≤M}

∫ L−x

M−x

uM−x (s, y− x, v) dv dy

+δ0(dy)

∫ L−x

M−x

dz

∫ z

M−x

uM−x (s, y, z) dy

+δ0(dy)

∫ +∞

L−x

∫ z

0

uM−x (s,w, z) dw dz

where

uM(s, u, v) = fρs(v− u) · (5)

∫ M

0

fs−τ(x)dx

∫ ∞

M−x

fτ−ρs(u− t− x)µ(dt),

for τ < s < τ/ρ andM < u < v, and

uM(s, u, v) = f(1−ρ)s(u) · (6)

∫ ∞

M

fτ (v−w)dw

∫ ∞

w−M

fρs−τ(w− u− t)µ(dt),

for s > τ/ρ andu < M < v.

4 RELIABILITY MEASURES

Using the kernel of the Markov renewal process
(Sn, YSn

)n for both repair models, Markov renewal
equations are given for some reliability measures and
for a cost function.

4.1 Transient Availability

Let Ax(t) be the probability that the system is work-
ing at timet givenY0 = x with x ∈ [0,M ]:

Ax(t) = Px(Yt < L).

In caset ≤ τ , it is easy to show that

Ax(t) = Ft(L− x),

for both repair models. Fort > τ , one has

Theorem 1 For both models, the availability func-
tion fulfills the following Markov renewal equation

Ax(t) = Gx(t) +

∫ t

τ

∫ M

0

Ay(t− s)qx(ds, dy),

for all t > τ , x ∈ [0,M ] whereGx(t) is given by

Gx(t) =

∫ M−x

0

ft−τ (y)Fτ(L− x− y)dy (7)

and whereqx(ds, dy) is given by (3) for Model I and
by (4) for Model II.

Proof 2 (sketch of) For t > τ , one classically sepa-
rates according to whether the first maintenance time
is greater or smaller thant:

Ax(t) = Px (Yt < L,S1 > t) + Px (Yt < L,S1 ≤ t) .

The first term is

Px (Yt < L,S1 > t)

= Px (Xt < L,σM > t− τ)

= Px (Xt < L,Xt−τ < M)

= P (Xt < L− x,Xt−τ <M − x)

This provides the first term based onXt = Xτ +
(Xt −Xτ ) and the independence ofXτ andXt −Xτ .



As for the second term, by conditionning by the past
of the process up to timeS1 and using the Markov
property at timeS1, we get:

Px (Yt < L,S1 ≤ t) = Ex

[

1{S1≤t}E
(

1{Yt<L}|FS1

)]

= Ex

[

1{S1≤t}AYS1
(t− S1)

]

=

∫ t

τ

∫ M

0

Ay(t− s)qx(ds, dy)

4.2 Transient Reliability

Let Rx(t) be the probability that the system does
not stop functioning in(0, t) givenY0 = x with x ∈
[0,M ], that is,

Rx(t) = Px(T > t), t ≥ 0,

whereT is the time to failure of the maintained sys-
tem. In caset ≤ τ , it is easy to show that

Rx(t) = Ft(L− x),

for both repair models. We next envision the case
wheret > τ .

Theorem 2 The reliability function fulfills the follow-
ing Markov renewal equation

Rx(t) = Gx(t) +

∫ t

τ

∫ M

0

Ry(t− s)νx(ds, dy),

for all t > τ , x ∈ [0,M ] whereGx(t) is given by (7)
and νx(ds, dy) denotes the kernel of the Markov re-
newal process(Sn, YSn

)n∈N restricted to the operat-
ing states.

For Model I, this kernel is:

νx(ds, du) =

δ0(du)1{M−x<(1−ρ)(L−x)}

∫ L−x

M−x
1−ρ

hM−x(s, u)du ds

+1{0≤u−x<Bx(M,L)}h
M−x

(

s,
u− x

1− ρ

)

du

1− ρ
ds.

For Model II, it is:

νx(ds, dy)

= 1{y≤M}

∫ L−x

M−x

uM−x (s, y− x, v) dv dy

+δ0(dy)

∫ L−x

M−x

dz

∫ z

M−x

uM−x (s, y, z) dy

whereuM is provided by(5,6).

4.3 Transient expected cost

Let cx (t) be the mean cumulated cost on]0, t] given
thatY0 = x with x ∈ [0,M ], that is,

cx(t) = Ex [C (]0, t])] ,

whereC (]0, t]) denotes the maintenance cost in]0, t].
We calculatecx(t) for both repair models consider-
ing the following sequence of costs:cCR corrective
replacement cost,cPR preventive replacement cost,cR
repair cost andcd downtime cost per unit time.

For t ≤ τ and for the two models of repair,

cx(t) = cd

∫ t

0

P(t− u > σL−x)du

= cd

∫ t

0

F̄t−u(L− x)du.

Fort > τ , we have a similar Markov renewal equation
as for the previous indicators:

cx(t) = Hx(t) +

∫ t

τ

∫ M

0

cy(t− s)qx(ds, dy),

for t > τ , x ∈ [0,M ], whereHx(t) is a complicated
function, with expression provided in Theorem 3 of
(Mercier & Castro 2013), and whereqx(ds, dy) is
given by (3) for Model I and by (4) for Model II.

5 NUMERICAL EXAMPLES

In order to illustrate the analytical results, several nu-
merical examples based on Monte Carlo simulations
are here considered.

Firstly, let α = 1.5 and β = 3 be the parameters
of the gamma process. The system is assumed to be
new at time 0, that isY0 = 0. The failure threshold
is L = 10. The induced approximated expected time
to exceed level 10 isE (σL) ≃ 20.37 time units. The
maintenance efficiency is provided byρ = 0.5. The
costs associated with the different maintenance ac-
tions arecCR = 100 monetary units (m.u.),cPR = 60
m.u.,cR = 5 m.u. andcd = 2 m.u. per time unit. Let
τ = 10 time units be the delay time to start the main-
tenance tasks.

Figure 1 shows the transient availability of the sys-
tem versusM at timet = 75 for the two models. Fig-
ure 1 has been performed with 100 values from 0 to
10 and 40000 realizations in each point. As we can
check by inspection, similar values are obtained for
the transient availability for both models of repair.

Anagolously, Figure 2 shows the expected cost rate
versusM at time t = 75 for both repair models. A
maximum difference of 19.1295 m.u is found in the
expected cost for the two models. For this simulation,
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Figure 1: Availability versusM at timet = 75, ρ = 0.5 andτ =

10

the proportion of the different maintenance actions
are the following. For Model I:7.69% repairs,56.96%
corrective replacements and35.35% preventive re-
placements. For Model II,5.69% repairs,56.93% cor-
rective replacements and35.43% preventive replace-
ments.

For the same data set and increasing the mainte-
nance efficiency (ρ = 0.75), Figures 3 and 4 show
the availability versusM at timet = 75 and the ex-
pected cost versusM at timet = 75 respectively for
both repair models. There are slight differences for
the values of the transient availability of the two re-
pair models. For the expected cost, we get a maxi-
mum difference of 10.14 m.u. For this data set, the
proportion of maintenance actions are the following.
For Model I: 30.74% repairs,55.34% corrective re-
placements and13.91% preventive replacements. For
Model II, 30.68% repairs,55.42% corrective replace-
ments and13.90% preventive replacements.

The delay time to perform the maintenance tasks
is decreased (τ = 2) maintaining the same efficiency
(ρ = 0.75) and the initial data set (α = 1.5, β = 3,
L = 10, cCR = 100 m.u.,cPR = 60 m.u.,cR = 5 m.u.
andcd = 2 m.u. per time units). Figures 5 and 6 show
the transient availability and the expected cost rate at
time t = 75. As before, similar values for the avail-
ability transient are obtained for the two repair mod-
els. For the expected cost, a maximum difference of
255.7646 m.u is found for low values ofM . For this
data set and this simulation, the proportion of mainte-
nance actions are the following. For Model I:74.63%
repairs,4.64% corrective replacements and20.73%
preventive replacements. For model II,69.94% re-
pairs,4.60% corrective replacements and25.45% pre-
ventive replacements.

Finally, some figures showing the transient reliabil-
ity for both models of repair are given. As in the pre-
vious examples, the gamma process parameters and
the failure threshold are given byα = 1.5, β = 3 and
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Figure 2: Expected cost versusM at timet = 75 with ρ = 0.5
andτ = 10
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Figure 3: Availability versusM at timet= 75 with ρ= 0.75 and
τ = 10
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Figure 4: Expected cost versusM at timet = 75 with ρ = 0.75
andτ = 10
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Figure 5: Availability versusM at timet= 75 with ρ= 0.75 and
τ = 2
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Figure 6: Expected cost versusM at timet = 75 with ρ = 0.75
andτ = 2
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Figure 7: Reliability versusM at timet = 20
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Figure 8: Reliability versusM at timet = 10

L= 10 respectively. For a maintenance efficiency rep-
resented byρ = 0.75 with a delay time to perform the
maintenance given byτ = 5 units of time, Figure 7
shows the reliability at timet = 20 versusM . De-
creasing the delay time to perform the maintenance
(τ = 3), Figure 8 shows the reliability at timet = 10
for both types of repair.

6 CONCLUSIONS

In this paper, the reliability analysis of a system
subject to a continuous degradation modelled as a
gamma process is analyzed. Different maintenance
actions (preventive replacements, corrective replace-
ments and repairs) are performed. The repairs are
imperfect and they are developed under two mod-
els: Model I that reduces the degradation of the sys-
tem and Model II that reduces the age of the system.
For both models, the fuctioning of the system is de-
scribed through a semi-regenerative process. We ob-
tain that the transient availability, reliability and ex-
pected cost fulfill Markov renewal equations. Numer-
ical examples based on Monte-Carlo simulations are
given. These numerical examples show that transient
availability and reliability values are similar for the
two repair models and the differences between them
are found in the expected cost. The numerical exam-
ples of this paper have been performed using Monte-
Carlo simulation due to the complexity of the Markov
renewal equations. A future extension of this paper is
to analyze the transient behavior of the system using a
recursive numerical scheme based on the Markov re-
newal equations provided in the paper. This should al-
low numerical computations to be quicker and to per-
form comparisons between the two models on a larger
scale.
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