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ABSTRACT: A system subject to an accumulative deterioraaad continuously monitored is considered.
The system fails when its degradation level exceeds a medeted failure threshold. At system failure, a
signal is sent to the maintenance team, which arrives afiged delay and performs an instantaneous replace-
ment. To prevent failures and shorten the down period, aiionebased maintenance strategy is applied and
the maintenance team is preventively called when the datgoadof the system exceeds a predetermined pre-
ventive threshold lower than the failure threshold, with §ame fixed delay for the team’s arrival otherwise. At
maintenance time, an instantaneous but imperfect repperi®rmed. Two different imperfect repair models
are considered, in the spirit of virtual age models for resnirevents. The first model assumes that the repair
reduces the degradation of the system (Model I). The secamtthassumes that the repair reduces the age of
the system (Model I). For both models, Markov renewal emquigtare obtained for some reliability indicators.
Numerical examples are given to illustrate the analytiealiits and to compare both models of repair.

1 INTRODUCTION are usually proposed, aiming at preventing failures.
Such maintenance strategies minimize the mainte-
Most of the systems suffer a physical degradation benance cost, improve operational safety and reduce the
fore the failure. Mathematical models that describequantity and severity of in-service system failures,
the process of degradation of systems play a centralee (Bérenguer, Grall, Dieulle, & Roussignol 2003),
role to improve the reliability and the maintainabil- (Grall, Bérenguer, & Dieulle 2002), (Huynh, Bar-
ity of these systems. For certain types of degradaros, Bérenguer, & Castro 2011) e.g.. Condition-based
tion processes, a model involving independent nonmaintenance uses data collected through continuous
negative increments is appropriate. The gamma pramonitoring, and based on the information data, differ-
cess (Singpurwalla 1995) is a natural model for degraent maintenance actions are programmed. The system
dation processes in which the deterioration is supeondition after a maintenance action depends on the
posed to take place gradually over time in a sequenceaintenance efficiency with two extreme cases: the
of tiny increments such as wear, fatigue, corrosionsystem condition is the same as just before the main-
crack growth, etc. Mathematically, a gamma processenance action (minimal maintenance) and the system
is a stochastic process with independent, non-negativandition is the same as if the system were new (per-
and gamma distributed increments with a commorfect maintenance). In practice, system condition af-
scale parameter. Furthermore, the existence of an exer the maintenance actions lies between these two
plicit probability distribution function of this stochas- extreme cases (Doyen & Gaudoin 2004). In the lit-
tic process permits feasible mathematical developerature several models combining imperfect mainte-
ments. nance and degradation processes have been proposec
For deteriorating systems, when the degradatiosee (Castanier, Bérenguer, & Grall 2003), (Newby &
level reaches a threshold, the system is no longeBarker 2006) and (Nicolai, Frenk, & Dekker 2009).
able to function satisfactorily. Since it is generally This paper shares the modelling assumptions of
less costly to replace a system before it has failed(Mercier & Castro 2013). So, a system subject to a cu-
maintenance policies based on the system conditiomulative deterioration modelled as a gamma process,



continuously monitored and under an imperfect andhe system reaches a preventive maintenance lgvel
deferred maintenance is analyzed. By deferred main) < M < L), namely at timer,,,

tenance, we mean that the maintenance tasks are not

performed when they should be carried out, due to &), = inf (¢t > 0: X, > M).

delay in the arrival of the maintenance team. The im-

perfect maintenance is developed under two modelat time o, + 7, the maintenance team is ready to op-

of repair. In the first model (Model 1), repair reduces erate and tries to adjust the system. At the time of the
the degradation of the system accumulated from thenaintenance,

last maintenance action. In the second model (Model
), repair reduces the system age accumulated from
the last maintenance action. Both models of repair
take into acount the overshoot of the gamma process
and are analyzed under the theory of Markov Renewal
processes. For both models of repair, different tran-
sient reliability measures are obtained in the frame-
work of semi-regenerative processes with continuous

o If the system is failed (that ig5;, < o) +17), @
corrective replacement is performed and the sys-
tem is replaced by a new one.

e If the system is working (that ig;;, > oy + 7),
an imperfect repair is performed with two mod-

space state. Numerical examples are given to compare els of repair:
both types of repair.

The paper is structured as follows. In Section 2, — Model I. The repair tasks remove a part
the formulation of the problem is showed. Section 3 (p%) of the degradation accumulated from
develops the mathematical formulation that describes the last maintenance model € p < 1).

the functioning of the system under the two repair
models. Section 4 is focused on the calculus of dif-
ferent transient reliability measures. Section 5 shows
some numerical examples of the measures calculated
previously and Section 6 concludes.

— Model Il. The repair tasks remove a part
(p%) of the age accumulated from the last
maintenance model (< p < 1).

o After the imperfect repair

2 FORMULATION OF THE PROBLEM _ _
— If the degradation of the system is greater

We consider a system subject to a deterioration mod- than, the system is considered to be too
elled by a gamma processX,),.,, where X, is degraded. A preventlve'replacement IS per-
gamma distributed (at, 3) with probability distribu- formed and the system is replaced by a new
tion function (p.d.f.) one.

gt — If the degradation of the system is less than
fi(x) = D xatflefﬁml& (z), M, the system goes on working.
wherel,, stands for the indicator function and 3 > In short, the _maintenance actions for Model | and
0 and with Lévy measure given by Il are the following

e A corrective replacement (CR) when the system

o—Bs is broken at the arrival of the team maintenance.
w(ds) =« Ir- (s)ds. (1) _ _ o
§ e A preventive repair (PM) when the repair brings
The cumulative distribution function (c.d.f) and  the degradation of the system beld
survival function (s.f.) ofX; are denoted by, and . . .
F, respectively. e A preventive repair plus a preventive replace-
The system fails when its degradation exceeds the ~ment (PM+PR) when the repair does not bring
level L with time to failure the degradation below/.

op =inf(t>0:X;>1L). To specifically describe the two models of repair

Attime o, a signal is sent to the maintenance teamfalnd the mamtengnce strategy, we shall nzgke use of
which arrives at timer;, + 7 wherer is deterministic  independent copies ¢f),., denoted by(Xt >t>0

and instantaneously replaces the out-of-order systefg, ,, — 19 Corresponding reaching times of
by an identical new one (at timg, + 7). Hence, the o ) ( ()
system is unavailable fromy, up too, + 7. thresholdZ (M) are denoted by, (UM ) respec-

To reduce the system downtime, an alert signal idively and let(Y}),., be the process that describes the
preventively sent to the maintenance team as soon &volution of the maintained system.



3 MATHEMATICAL FORMULATION o If Y- < L, a preventive maintenance action
puts the system back to the deterioration level
Let S; = 05\}[) + 7 be the first maintenance time. At Ys .+ ZZ(J ).

time S;, the deterioration Iev@(fgll) is observed. If the
system is not failed, namerJYSl) < L, a preventive

repair is performed. For Model | , the repair reduces
p% of the degradation of the system. The degradation

level after repair hence id — p)Xéll) (deterministic

function ofogll)). For Model ll, the repair reducest
of the system age. The degradation level after repair

- IfYs, , + Zl(};) > M, the system is unmain-
tainable and it is replaced by a new one at
S, henceYg, = 0.

—If Y, , + Z) < M, the system is not re-
placed atS,, andYs, =Yg, | + Z[(Z).

For both models, after a maintenance action at time

hence is random, identically distributedﬁéllp) g
In the following, we set:
- { (1-— )X(") for Model I,

(n)
X1~ for Model 1.

Z;)

The general evolution of the maintained system for

both models of repair is the foIIowmg Wltfll
. the maintenance times andg, .

TL!

the |nter-

maintenance times (and, = Sy).
At t|me Sl :
o If X Sl > L a corrective replacement is per-

formed at times, Ys, = 0.

o If X 11) < L a preventive repair is performed at

time S, putting the system back to the deteriora-

tion IeveIngll)

— If Zéll) > M, the system is unmaintainable
Ys,

—If Z§) < M, Ys,

y
=75,

Sn, the future evolution of the maintained system
(Yi),>s, depends on the past;),.; only through
Ys, and the procesgY;),., appears as a semi-
regenerative process with underlying Markov renewal
procesgS,, Ys, ),y and inter-arrival time#/,’s. The
kernel of(S,, Y5, ),.cy IS

P(S; €ds, Ys, € dy|Yy = x)

¢z (ds, dy)

P, (Sl € dS, YS1 € dy)

with support[r, +oo[x [0, M| becauseS; > 7 and
Ys, € [0, M] almost surely. The main point of the
study is to compute this Markov renewal kernal for
the two models. As a first step for Model I, we have
to compute the distribution ofS;, Zs,, Xs,), with
Zg, = (1—p)Xg, for Model | andZg, = X(1_,)s,

for Model Il. We only provide elements of proofs for
Model I. Technical details may be found in (Mercier
& Castro 2013) for Model I, which are much more
technical than Model |. AZs, = (1 — p) Xg,, the first
point for Model | simply is to provide the distribution
of (Sl, Xsl).

Proposition 1 The probability distribution function

From Ys,, the second maintenance action is(p.d.f.) of(S;, Xs,) is:

planned at timey; = S + aM) ve, TT= S1+ Us,

e If Yy > L acorrective replacement is performed hM (s,

attimeS,, Yg, = 0.

o If Xy < L a preventive maintenance is per-
formed at timeS, putting the system back to the

deterioration levels, + Z[%).

—If Y, + Z[(,QQ) > M, the system is unmain-
tainableYy, = 0.

—If Y, + 23 < M, Ys, = Ys, + 25,
More generally, assume$;,Ss,...,S, and

(Yi)i<s, , to be constructed withn > 2. Let
U, = U](Z)_YS T ands,, = S,-1 + U,.

o If Yy > L, the system failed i@/, henceYs, =
0.

z) =

(@)

for all s > 7 andx > M, wherepn(ds) denotes the
Lévy measure given by (1) and where
D.y={(u,y) eRL:M<z—y<M+u}.

Proof 1 (sketch of) It is already known from

(Bertoin 1996) that the p.d.f. @b/, X,,,) IS

+oo
gM (t7y) = 1{ng}/ 1{y<M+u}ft (3/ - U) 2 (du) .
0

Using the fact that Sy, Xs,) = (oa + 7, X5y, 40) IS
identically distributed as<a](3},X( )

! ) + (T,Xﬁz)),
M

e



the p.d.f. of(S;, Xg,) is the convolution oy and forT <s<7/pandM < u < v, and
.. . (1) . .
of the distribution of(r, Xz ) which provides the uM (5,1,0) = fops(u) (6)
result.
Separating according to the three possible cases / fr(v—w)dw fos—r(w —u—t)p(dt),
M w—M

at time S; (CR, PM+PR, PM), the kernel of
(S, Ys,),en May be written as:

q.(ds,dy)
=P, (S5 €ds,Xs, > L,0 € dy) 4 RELIABILITY MEASURES
+P, (S1 € ds, X5, <L, X5, > 2L 0 € dy)

_'_Pm (Sl € d87XS1 < L7X51 XS

for s > 7/pandu < M < v.

Using the kernel of the Markov renewal process
(Sn,Ys,)n for both repair models, Markov renewal

equations are given for some reliability measures and
Given that the system starts frarmmwe next use the for a cost function.

p.d.f. of (S1, X, ) provided by(2) with M substituted
by M — x, and also replacé by L — z in the previ-
ous formula. This provides the following result for the
Markov renewal kernel. Let A,(t) be the probability that the system is work-
ing at timet givenY, = x with = € [0, M]:

1p’ 1

4.1 Transient Availability

Proposition 2 For Model I, we have:
. (ds, du) @) A =Be< ).
In caset < 7, itis easy to show that

= do(du) / B (s, u)du Au(t) = F(L — x),

2 for both repair models. Fdr> 7, one has
"‘(So(du)l{ﬂ/fx<(1p)(Lm)}/\/I—w M=% (s, u)du ds

1—p

Theorem 1 For both models, the availability func-
tion fulfills the following Markov renewal equation

[y u—x\ du M
+1{0<u—a<B, (ML)} P <S’Tp) 1 _pds, Ag( / / $)q.(ds, dy),

forall s > 7 andu < M, whereB,(M, L) is given by
B,(M,L) =min((L —x)(1 — p), M — z),

forall t > 7,z € [0, M] whereG,(t) is given by

M—z
andhM (s, z) is provided by(2). Ga(t) = /0 Je—r (W) Fr(L — x —y)dy (7)
For Model I, the corresponding result from .4 wher ‘e A
. o e (ds, dy) is given by (3) for Model | and
(Mercier & Castro 2013) is: by (4) for Model II.
o (ds, d 4 ,
% (ds, dy) 4) Proof 2 (sketch of) For ¢ > 7, one classically sepa-
L rates according to whether the first maintenance time
— 1{y<M}/ WM (s,y — x,v) dv dy is greater or smaller tham:
A, (t) =P, (Y, < L,S;1 >t)+P,(Y; < L,S; <t).
L—x
+d0(dy) / dz/ (s,,2) dy The first term is
P, (Y, < L,S; > 1)
+o0 z
+5o(dy)/L /0 uM " (s,w,2) dw dz =P, (X, < Loy >t—1)
where =P, ( Xy <L, Xy ., < M)
uM(s,u,0) = fos(v —u) - (5)

=P(X,<L—2X . <M—2z)

> This provides the first term based o, = X, +
/0 fo-r(@)da e freps(u—t —x)u(dt), (X, — X,) and the independence &f. and X, —



As for the second term, by conditionning by the past.3 Transient expected cost
of the process up to tim&; and using the Markov
property at timeS;, we get:

]Px (th < L,Sl S t) = Ex [1{51§t}E (1{Y1§<L}|‘F51):|

Let ¢, (t) be the mean cumulated cost {in¢] given
thatYy = = with z € [0, M], that is,

ca(t) = Eq [C(]0,2])],

= B, [1{51§t}AYsl (t—51)] whereC (]0,t]) denotes the maintenance cosj(r].
We calculatec, (t) for both repair models consider-
ing the following sequence of costs:; i corrective

= / / s)¢z(ds,dy)  replacement costpx preventive replacement cost;
repair cost and,; downtime cost per unit time.

p :
42 Transient Reliability Fort < 7 and for the two models of repair,

t
Let R,(t) be the probability that the system doesc,(t) = Cd/ P(t—u> op_y)du
not stop functioning in0,¢) givenY, = x with = € 0

[0, M], that is, .
R.(t) =P, (T >t), t>0, = Cd/o Fio(L — )du.
whereT is the time to failure of the maintained sys- Fort > 7, we have a similar Markov renewal equation
tem. In case < T, itis easy to show that as for the previous indicators:
R,.(t) = F,(L—x), t oM
0= hlk = ) =m0+ [ [ et=salds.ay)
for both repair models. We next envision the case T 70
wheret > 7. for t > 7, x € [0, M], where H,(t) is a complicated

o _ ) function, with expression provided in Theorem 3 of
Theorem 2 The reliability function fulfills the follow-  (Mercier & Castro 2013), and wherg,(ds, dy) is

ing Markov renewal equation given by (3) for Model I and by (4) for Model II.

M
R.( / / s)vg(ds,dy), 5 NUMERICAL EXAMPLES

In order to illustrate the analytical results, several nu-
merical examples based on Monte Carlo simulations
are here considered.

Firstly, leta« = 1.5 and 5 = 3 be the parameters

forall t > 7, z € [0, M] whereG,(t) is given by (7)
and v, (ds, dy) denotes the kernel of the Markov re-
newal processS,, Ys, Jnen restricted to the operat-

ing states. .
For Model I this kernel is: of the gamma process. The system is assumed to be
' new at time 0, that ig;, = 0. The failure threshold
vy (ds, du) = is L = 10. The induced approximated expected time
to exceed level 10 i& (o) ~ 20.37 time units. The
L—x maintenance efficiency is provided y= 0.5. The
do(duw) Lns—ze(1-p)(L—2)} / RM=% (s, u)du ds costs associated with the different maintenance ac-
= tions areccr = 100 monetary units (m.u.);pr = 60
m.u.,cg = 5 M.U. andc, = 2 m.u. per time unit. Let
Mz u—zx\ du 7 = 10 time units be the delay time to start the main-
+1i0<u—w<p.(m,L)3h <Sv 1— p> 1— ds. tenance tasks.
Figure 1 shows the transient availability of the sys-
For Model 1, it is: tem versus\/ at timet = 75 for the two models. Fig-
ure 1 has been performed with 100 values from O to
ve(ds, dy) 10 and 40000 realizations in each point. As we can
check by inspection, similar values are obtained for
Lo the transient availability for both models of repair.
— 1{y<M}/ u” T (s,y — x,v) du dy
+50(dy)/L de/Z WM (54 2) dy Anagolously, Figure 2 shows the expected cost rate
Mz Mz versus)M at timet¢ = 75 for both repair models. A

o ) maximum difference of 19.1295 m.u is found in the
whereu™ is provided by(5,6). expected cost for the two models. For this simulation,
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Figure 2: Expected cost versiig at timet = 75 with p = 0.5
the proportion of the different maintenance actionsndr = 10
are the following. For Model I7.69% repairs 56.96%
corrective replacements arg$.35% preventive re-
placements. For Model 15.69% repairs 56.93% cor-
rective replacements ard$.43% preventive replace- .
ments.

For the same data set and increasing the mainte
nance efficiency { = 0.75), Figures 3 and 4 show 0ot
the availability versus\/ at timet = 75 and the ex-
pected cost versus/ at timet = 75 respectively for
both repair models. There are slight differences for_ os}
the values of the transient availability of the two re- < |
pair models. For the expected cost, we get a maxi
mum difference of 10.14 m.u. For this data set, the °7f
proportion of maintenance actions are the following. e}
For Model I: 30.74% repairs,55.34% corrective re-
placements andl3.91% preventive replacements. For
Model Il, 30.68% repairs,55.42% corrective replace- ~ oss/——— - —
ments and 3.90% preventive replacements. v

The delay time to perform the maintenance taskgigure 3: Availability versus// at timet = 75 with p = 0.75 and
is decreasedr(= 2) maintaining the same efficiency =10
(p = 0.75) and the initial data seto(= 1.5, 5 = 3,

L =10, ccr = 100 m.u.,cpr = 60 M.U.,cg = 5 M.U.
andcy = 2 m.u. per time units). Figures 5 and 6 show
the transient availability and the expected cost rate ¢
time ¢t = 75. As before, similar values for the avail-  *°
ability transient are obtained for the two repair mod- seo-
els. For the expected cost, a maximum difference 0,
255.7646 m.u is found for low values of. For this
data set and this simulation, the proportion of mainte:
nance actions are the following. For Model#.63%
repairs,4.64% corrective replacements ari).73%
preventive replacements. For model 69.94% re- 2601
pairs,4.60% corrective replacements afdl.45% pre-
ventive replacements.
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Finally, some figures showing the transient reliabil- _ _ _ _
ity for both models of repair are given. As in the pre- ;'9 d““i”'ig’(pe‘:te‘j cost versip# attimet = 75 with p = 0.75
vious examples, the gamma process parameters afd "~
the failure threshold are given by= 1.5, 5 = 3 and
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Figure 8: Reliability versud/ at timet = 10

L =10 respectively. For a maintenance efficiency rep-
resented by = 0.75 with a delay time to perform the
maintenance given by = 5 units of time, Figure 7
shows the reliability at time¢ = 20 versusM. De-
creasing the delay time to perform the maintenance
(7 = 3), Figure 8 shows the reliability at time= 10

for both types of repair.

6 CONCLUSIONS

In this paper, the reliability analysis of a system
subject to a continuous degradation modelled as a
gamma process is analyzed. Different maintenance
actions (preventive replacements, corrective replace-
ments and repairs) are performed. The repairs are
imperfect and they are developed under two mod-
els: Model | that reduces the degradation of the sys-
tem and Model Il that reduces the age of the system.
For both models, the fuctioning of the system is de-
scribed through a semi-regenerative process. We ob-
tain that the transient availability, reliability and ex-
pected cost fulfill Markov renewal equations. Numer-
ical examples based on Monte-Carlo simulations are
given. These numerical examples show that transient
availability and reliability values are similar for the
two repair models and the differences between them
are found in the expected cost. The numerical exam-
ples of this paper have been performed using Monte-
Carlo simulation due to the complexity of the Markov
renewal equations. A future extension of this paper is
to analyze the transient behavior of the system using a
recursive numerical scheme based on the Markov re-
newal equations provided in the paper. This should al-
low numerical computations to be quicker and to per-
form comparisons between the two models on a larger
scale.
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